DRSCW NPDES PERMIT

SPECIAL CONDITIONS:
PHOSPHORUS REMOVAL STUDIES

NICK MENNINGA, PE, DOWNERS GROVE SANITARY DISTRICT

JANUARY 28, 2016
OUTLINE

• PERMIT LANGUAGE

• OPERATIONAL OPTIMIZATION PLAN AND IMPLEMENTATION

• TREATMENT PLANT IMPROVEMENT STUDY TO MEET SPECIFIC EFFLUENT STANDARDS

• STUDY SCOPE / APPROACH
 • DATA COLLECTION
 • PLANT MODELING
 • ALTERNATIVE TECHNOLOGY EVALUATION
 • COST ESTIMATES
PERMIT LANGUAGE

• PHOSPHORUS DISCHARGE OPTIMIZATION PLAN (PDOP)
 • NOT UNIQUE TO DRSCW
 • INFLUENT REDUCTION MEASURES – RICK’S TALK
 • OPTIMIZING EXISTING TREATMENT PROCESSES WITHOUT CAUSING PROBLEMS
 • LIKELY PROBLEM #1: SOLIDS SETTLING (COMPLIANCE PROBLEM)
 • LIKELY PROBLEM #2: ELEVATED AMMONIA (STREAM HEALTH PROBLEM)
• ARE MEASURES PRACTICAL, OR NOT?
PERMIT LANGUAGE (CONTD)

• SPECIFIC OPERATIONAL MEASURES – ALL ASSOCIATED WITH ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL (EBPR)
 • CHANGE SRT PER TYPICAL EBPR CONFIGURATION: SHORTER THAN FOR NITRIFYING-ONLY PLANT
 • ADJUST AIR RATES, LOW DO IN ANOXIC/ANAEROBIC ZONES (OR IN UPPER END OF PLUG FLOW BASIN)
 • IMPROVED AERATION FOR RECYCLE STREAMS
 • ADJUST FLOW PATTERN TO PROMOTE EBPR (NOT RE-PIPE)
 • INCREASE VFA PRODUCTION – KEY INGREDIENT FOR EBPR

• SCHEDULE: 24 MONTHS FOR PLAN, 36 MONTHS TO IMPLEMENT, REPORT ANNUALLY IN MARCH

• IF THESE MEASURES ARE IMPRACTICAL, REPORT NEEDS TO STATE WHY
PERMIT LANGUAGE (CONTD)

• FEASIBILITY STUDY
 • NOT UNIQUE TO DRSCW
 • TREATMENT PLANT IMPROVEMENTS
 • 3D METRIC OF OPTIONS TO EVALUATE:
 • 1.0, 0.5, 0.1 MG/L LIMITS
 • MONTHLY, SEASONAL, ANNUAL AVERAGE BASIS
 • TECHNOLOGIES: CHEM PRECIP, EBPR, COMBINATION
 • 27 TOTAL OPTIONS? SOME WILL DROP OUT AS NOT FEASIBLE, OR OVERLAP
 • EACH OPTION NEEDS A START-TO-FINISH IMPLEMENTATION DURATION
 • FINANCIAL EVALUATION: CAPITAL, O&M, IMPACT ON RATES
 • SCHEDULE: SAME AS PDOP, 24 MONTHS. NO IMPLEMENTATION REQUIREMENT.
PDOP

- KEY STUDY FOCUS: IS EBPR PRACTICAL WITH EXISTING FACILITIES?
ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL

- PHOSPHORUS ACCUMULATING ORGANISM (PAO) METABOLISM

- CHALLENGES
 - TANKAGE – SEPARATION OF ANAEROBIC ZONE, LOSS OF NITRIFICATION SPACE
 - INHIBITORY CONDITIONS – NITRATES: LIKELY TO NEED DENITRIFICATION
 - SPECIFIC TYPE OF FOOD NEEDED: CARBON AS VOLATILE FATTY ACIDS: RBCOD
 - FILAMENTOUS CONTROL – SELECTOR, STRICT LOW SLUDGE AGE

Biological Phosphorus Removal Process
ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL

- AO PROCESS
- A2O PROCESS
- MLE PROCESS
- UCT PROCESS
- OTHERS
ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL

- AO PROCESS
- A2O PROCESS
- MLE PROCESS
- UCT PROCESS
- OTHERS
CONSIDERATIONS FOR EBPR SUCCESS

• TANKAGE AND PIPING
• SEWAGE CHARACTERISTICS – C/N/P, IN PARTICULAR RBCOD
• SLUDGE TREATMENT AND HANDLING
PDOP

• SIX ITEMS TO CONSIDER (FREE TO LOOK AT OTHERS)
 • SRT
 • REDUCE DO TO PROMOTE EBPR
 • TURN OFF AIR AT INLET SIDE OF PLUG FLOW BASINS
 • IMPROVE RECYCLE STREAM AIR
 • ADJUST FLOW THROUGH BASINS
 • INCREASE VOLATILE FATTY ACIDS

• IDENTIFY WHAT IS PRACTICAL

• MAKE IMPLEMENTATION SCHEDULE OF PRACTICAL ITEMS

• ROOM FOR ADAPTIVE MANAGEMENT

• ANNUAL PROGRESS REPORTS
FEASIBILITY STUDY

• MORE TRADITIONAL ENGINEERING STUDY

• ASSURANCE FROM ENGINEER THAT RECOMMENDED IMPROVEMENTS WILL MEET TARGET PERFORMANCE CRITERIA

• UP TO 27 OPTIONS PER METRICS IN PERMIT

• FOR EACH OPTION: BASIS OF DESIGN, COSTS, IMPLEMENTATION SCHEDULE
OVERALL SCOPE OF SERVICES: 2 STUDIES IN 1

- PDOP EVALUATION IS A SUBSET OF FEASIBILITY STUDY: EBPR USING EXISTING PLANT
- STUDY STEPS
 - DATA COLLECTION
 - PLANT MODELING
 - ALTERNATIVE TECHNOLOGY EVALUATIONS
 - COST ESTIMATES
DATA COLLECTION

• P DATA: P IS IN SEVERAL FORMS, NEED TO UNDERSTAND VARIOUS FRACTIONS TO EVALUATE EBPR AND CHEM PRECIP OPTIONS: INFLUENT, EFFLUENT, RECYCLES

• EBPR SUPPORT DATA: VARIOUS FORMS OF CARBON, ALKALINITY, PH, NITROGEN

• MONITORING PLAN SHOULD SPAN REPRESENTATIVE PERIOD, ADEQUATE AMOUNT OF DATA TO CONDUCT MODELING
PLANT MODELING

- DESKTOP COMPUTER MODELS
- COMPUTATIONAL ENGINES – PROPRIETARY OR OPEN SOURCE
- PROPRIETARY USER INTERFACES
- SPREADSHEET MODELING: SIMPLIFIED CALCULATIONS
ALTERNATIVE TECHNOLOGY EVALUATIONS

• EBPR
• CHEMICAL PRECIPITATION
• COMBINING THESE TECHNOLOGIES
• LOWER LEVELS WILL LIKELY INCLUDE IMPROVED FILTRATION
CHEMICAL PRECIPITATION

JAR TESTING

OPTIONAL FEED POINTS

ADDITIONAL SLUDGE
OTHER CONSIDERATIONS

- OPPORTUNITIES FOR CAPACITY EXPANSION
- SLUDGE QUANTITIES AND CHARACTERISTICS
- RETROFIT VS NEW FACILITIES
- OPERATIONAL IMPACTS
 - I&C
 - STRUVITE FORMATION/CONTROL/RECOVERY
 - STAFF
 - FILAMENTOUS CONTROL
 - ENERGY
 - ODORS
 - SOLIDS DEPOSITION
 - OTHER PARAMETERS – AMM-N
COST EVALUATION

• CAPITAL – NEED TO DEVELOP ALTERNATIVES TO A PLANNING LEVEL
• O&M – DON’T FORGET SLUDGE
• REVENUE REQUIREMENTS/BILLING RATES
QUESTIONS

NMENNINGA@DGSD.ORG